
www.manaraa.com

Conceptual Programming Models of Distributed

Systems

by

Christopher Wolfe

Queen’s University

Kingston, Ontario, Canada

November 2006

Copyright c© Christopher Wolfe, 2006

www.manaraa.com

Contents

Contents i

List of Figures iii

1 Introduction 1

2 Terminology 4

3 Graphical Notation 5

4 Communication Models 6

4.1 Shared Data . 6

4.2 Message Passing . 11

4.3 Remote Procedure Call . 13

4.4 Mobile Agents . 14

5 Distribution Transparencies 16

5.1 Access Transparency . 18

5.2 Location Transparency . 18

5.3 Migration Transparency . 19

5.4 Relocation Transparency . 20

5.5 Replacement Transparency . 22

5.6 Replication Transparency . 23

5.7 Persistence Transparency . 24

5.8 Transaction Transparency . 25

5.9 Failure Transparency . 26

6 Configuration 26

6.1 Implicit Configuration . 27

i

www.manaraa.com

6.2 Configuration API . 28

6.3 Configuration Language . 29

6.4 Automatic Refinement . 30

6.5 Analysis . 31

7 Conclusion 32

Bibliography 33

ii

www.manaraa.com

List of Figures

1 Elements from the Workspace notation 5

2 Conceptual views of Shared Data . 7

3 Conceptual view of Message Passing . 11

4 Conceptual view of Remote Procedure Call 13

5 Conceptual views of Mobile Agents . 15

6 Distribution transparencies in selected toolkits 17

7 Location transparency . 19

8 Migration transparency . 20

9 Relocation transparency . 20

10 Relocation using the breadcrumbs technique 21

11 Replacement transparency . 22

12 Replication transparency . 23

13 Persistence transparency . 24

14 Broadcast of two arrays in PVM from [34] 29

iii

www.manaraa.com

1 INTRODUCTION 1

1 Introduction

In this paper, we review the foundations and state of the art in distributed systems

toolkits. We focus our discussion on the the programming models of the toolkits, which

define how the programmer conceptualises the structure and operation of an application.

Three aspects of the programming models are examined in detail to provide a taxonomy:

how communication is performed, what implementation details are concealed from the

programmer, and how the organisation or implementation may be selected and modified.

Each of these aspects is subdivided into common approaches, and accompanied with

examples from research literature or industrial practise.

Distributed systems, in which computers without shared memory interact extensively,

present a particularly complex programming environment. Despite their complexity, dis-

tributed systems are useful for problems which require high performance, high availability,

or in contexts where resources are inherently distributed [8]. For example:

• Distributed systems can improve the performance of some huge distributed prob-

lems, as demonstrated by SETI@Home [1], Folding@home [52] and distributed

rendering environments [57, 39].

• Enterprise databases such as IBM DB2 and Oracle use distribution to improve

availability and performance [62].

• Collaborative groupware (e.g. GroupKit [73]) and specialised servers (e.g. in Amoe-

baOS [79]) use distribution to allow physically separated people and resources to

interact.

• All of these benefits appear in environments like massively multiplayer online games,

which combine expensive computations, high availability demands and distributed

users (e.g. World of Warcraft [19]).

www.manaraa.com

1 INTRODUCTION 2

The modern proliferation of interconnected computing devices, such as smart phones,

laptops and PDAs, has kindled increased interest in distributed systems [48]. Such de-

vices typically have limited performance and resources, so cooperation between devices

is important. Intermittent connectivity, mobility, and problems such as limited batteries

motivate the need for adaptability and fault tolerance. Inherent distribution appears in

collaborative scenarios, and when a single user is switching between devices or accessing

remote resources. Beyond the requirements of distributed systems, the sheer heterogene-

ity of these devices – e.g. varying processors, displays, input devices – makes developing

software for them difficult.

The advantages of distributed systems have led to significant research focused on

reducing the complexity of their implementation. Distributed systems toolkits seek to

reduce complexity by concealing elements of the system, typically including low-level

details, like the type of network used to connect the distributed system’s nodes, or the

device upon which an operation occurs. Each of these toolkits defines one or more pro-

gramming models – conceptual frameworks that provides the application developer with

a simplified view of the system – that are amenable to programming distributed systems.

Many toolkits can be customised to interact better with a particular application, for

example by introducing custom network protocols or locking algorithms. Unfortunately,

these customizations typically require specialized knowledge of the toolkit.

Distributed systems programming models must compromise between complete trans-

parency, where the entire system appears to be one statically configured computer, and no

transparency, where the developer must control all details of the distributed communica-

tion. In general, and particularly when heterogeneous mobile devices are involved, dealing

with all of the complexities would make developing a large, flexible application infeasible.

Many toolkits provide a highly transparent model for general application programming

and additional mechanisms to access and control the underlying implementation.

It is often useful to represent change in a distributed system model, for example as

www.manaraa.com

1 INTRODUCTION 3

new users enter a collaborative session or when a computer fails. One of the consider-

ations of a programming model is how changes in the environment can be indicated to

the programmer, and how the behaviour of the program can adapt in response. Many

traditional toolkits are primarily intended for computational problems in static managed

environments [29]. Any change, including a network failing or a new computer being

introduced, would require either explicit handling by the application or restarting the

system. This restriction is obviously unacceptable for unmanaged systems, for example

unrelated devices connected via the Internet, so further research has dealt with toolkits

that can change the distributed structure of a running application. In some cases, this

evolution extends even to dynamically replacing and reconfiguring parts of the toolkit

infrastructure.

Research in distributed systems has originated from numerous communities, includ-

ing databases, mathematical computation, and computer-supported cooperative work

(CSCW). As such, it is no surprise that papers use widely varying terminology. For

consistency, we impose a single notation and terminology to compare the architectures,

advantages and limitations of the various distributed systems toolkits. Section 2 defines

our terminology, while section 3 defines our graphical notation.

Our discussion of distributed system toolkits is divided across the three aspects:

Communication models, in section 4, deal with how the conceptual behaviour of the

system is exposed to an application programmer. Transparencies, in section 5, define

particular aspects of the distribution that are hidden by the programming model. Finally,

configuration, in section 6, details how the connectivity and implementation of the system

is expressed.

www.manaraa.com

2 TERMINOLOGY 4

2 Terminology

We now define the terminology used throughout this paper. Some of the papers cited

here use these terms in substantially different ways. Where terms are needed only in a

single section, they will be defined therein.

A node refers to a single computational resource, which may have multiple processors

and locally shared memory. There will generally be one node per physical computer,

though creating multiple virtual nodes on one computer is often possible. A process is

the basic physical unit of concurrency on a node. A single process may have units of

internal concurrency, which are identified as threads. Both processes and threads are

local to a single computer, so may not migrate through the distributed system. Logical

threads are the unit of concurrency represented in the distributed systems toolkit. In

some toolkits, logical threads may migrate between nodes.

A value is anything that a variable may contain, usually a record, object or reference.

A record is an aggregate of one or more values, as in Pascal or a struct in C. An object is a

value with an associated set of operations, for example an integer or a representation of a

graphical window. A reference provides a mapping to another value. Local references are

limited to indicating values present in their node, while remote references may cross node

boundaries. A component is the value or collection of values, potentially with associated

threads, that serves as the basic unit of distribution. A connection is a communication

channel between two or more components.

A concurrency control manages parallel access to a resource or set of resources, for

example by only allowing one logical thread at a time to execute operations on a value.

Consistency maintenance deals with keeping two or more values in similar states, for

example ensuring distant collaborating users have the same view of a whiteboard. An

algorithm used in consistency maintenance is a consistency protocol.

www.manaraa.com

3 GRAPHICAL NOTATION 5component nodesynchronous callasynchronous callsynchronization
Figure 1: Elements from the Workspace notation

3 Graphical Notation

Through much of this paper we discuss the architecture and evolution of distributed

systems. To represent these structures in a precise visual format, we use a subset of the

Workspace Architecture [70] conceptual level notation. The particular elements present

in this paper are shown in Figure 1 and described below.

Workspace conceptual architectures consist of components interacting via connectors.

Each connector may be explicitly anchored to a node, and will then be drawn within the

node box. Components may also be floating, in which case they are drawn outside any

node. Floating components may be implemented on any node, including those shown in

the diagram.

Communication between components is performed only via explicit connectors. The

three types of connector each support a different mode of communication, but may all

cross node boundaries. Call connectors provide synchronous calls to a single target,

similar to imperative method calls. Subscription connectors deliver asynchronous events

to zero or more targets. Synchronisation connectors ensure that two or more components

maintain a degree of observational equivalence.

When depicting a change in the architecture, we show separate diagrams for the local

configurations before and after the evolution.

www.manaraa.com

4 COMMUNICATION MODELS 6

4 Communication Models

The programming model exposed by a distributed systems toolkit must provide some

mechanism allowing cooperating components to communicate. Such a model allows an

application programmer to express interaction and concurrency, often without being tied

to a precise implementation: for example, most computer networks are based on message

passing, but a communication model based on shared data is generally considered easier

to program.

We use four broad categories to describe how communication and distribution are

presented conceptually to an application programmer:

• Shared data, in which values appear to be directly accessible from multiple nodes;

• Message passing, where asynchronous events are passed between components;

• Remote procedure call, which allows synchronous method calls between distributed

components; and

• Mobile agents, where the components themselves move between nodes.

Toolkits often offer features from more than one of these categories, because many

algorithms are easier to describe using a particular communication model [5].

4.1 Shared Data

The shared data model draws from the long history of shared-memory multiprocessor

computers. At its core lies the illusion that all of the different computers involved in the

distributed system share some physical memory. Conceptually, this behaviour is provided

by placing the shared values in a virtual memory area outside any node (Figure 2(a)),

or by replicating them across multiple nodes (Figure 2(b)). Shared data models fall into

three primary categories: unstructured, record-structured and object-structured.

www.manaraa.com

4 COMMUNICATION MODELS 7A B C D
(a) Single instance at unknown location

A B C DB
(b) Replicated instances at multiple locations

Figure 2: Conceptual views of Shared Data. Component B appears to be directly acces-
sible from any node.

4.1.1 Unstructured shared data

This approach to shared data applies consistency and concurrency protocols to raw mem-

ory or memory pages [42]. It is most easily pictured as a form of virtual memory in which

the data may be stored on a remote computer rather than on a local disk [53].

While this model is more common in environments without a reliance on objects,

some object-based toolkits take advantage of its simplicity. Toolkits within this model

differ mostly in their approach to allocating memory addresses and managing concurrent

access.

Panda [3] is one of the few available examples of an object-oriented unstructured

shared data system. It provides a preprocessor and class library for C++, plus an

operating system kernel to provide the actual sharing of data. The preprocessor and

class library primarily provide features to simplify the user language, including a simple

object lookup service and mutual exclusion synchronisation. The kernel divides the

address space into a set of static partitions, with at least one public and private region

per node. Code on one node accessing memory in a region belonging to another node

triggers the kernel to copy values between nodes or migrate logical threads.

As evidenced by Panda and similar non-object-oriented systems, implementing un-

structured shared data is relatively simple. Operating system techniques commonly ap-

plied to virtual memory and local shared memory can be recycled to provide a classical

www.manaraa.com

4 COMMUNICATION MODELS 8

programming environment. The primary weakness of these systems is the difficulty of

identifying or expressing a high-level component model in terms of raw memory. This

limitation means that many concurrency and consistency maintenance protocols are hard

to provide.

4.1.2 Record-structured shared data

This approach organises the shared data into records, allowing the identification and

separate treatment of individual fields. The absence of methods associated with the

records maintains much of the simplicity of unstructured shared data, while making use

of more information available from the application programming language. This model

appears in distributed relational databases, but is most directly applicable to large-scale

software in systems like Linda [32].

Linda appeared in the mid eighties as a model for communication and coordination

of parallel processes [35]. It provides a collection of primitives that operate on a shared

tuple spaces. A tuple space in Linda is a shared data construct containing arbitrary

records, like a blackboard. The operations for accessing or extracting tuples from the

space specify a pattern containing the type or value of each field in the records to be

retrieved.

While the Linda primitives are not inherently object-based, they interact well with

object-based application languages. Similar efforts like WCL [86] have been implemented

for object-based languages. Extensions of Linda have added support for varying methods

of distributing the tuples [74] and asynchronous access to the tuple space [30].

The elegant semantics and simplicity of tuple spaces, and similar record-structured

shared data, makes them attractive for analysis and implementation. Unfortunately,

they behave differently from the usual constructs found in imperative object-oriented

programming, so do not integrate cleanly with such programming languages.

www.manaraa.com

4 COMMUNICATION MODELS 9

4.1.3 Object-structured shared data

This approach organises shared data into objects, each defined by a representation and set

of methods. This model follows that of traditional imperative object-oriented program-

ming languages, so combines well with such languages. Many toolkits allow manipulation

of the representation only from the associated methods, unlike programming languages

like C++ and Java where fields may be non-private. Such a limitation means that the

set of possible operations can be easily identified.

Orca [9] provides a good example of a custom language and runtime environment for

object-structured shared data. The language supports both sequential and distributed

constructs, while maintaining simple behaviour. Shared data is organised into abstract

data types: types of values that define an explicit set of permissible operations. The actual

communication implementation depends on the particular Orca runtime, for example the

original paper discusses implementations based on both point-to-point and broadcast

messages. Later work added support for replication [6], compile-time analysis [4], and

limited fault tolerance [45].

J-Orchestra [84] is a modern example of object-structured shared data based on an

existing language. The original work focused on distributing a compiled Java program

across nodes using bytecode modification of the application [80]. For example, many Java

system classes make use of native resources and executable code. The resulting toolkit

is capable of producing a distributed prototype of a Java application based on only the

compiled bytecode. More recent variations have explored implementations of the system

based on aspect-oriented programming [83], alternatives to Java RMI [81], prototyping

for ubiquitous computing [55], and distributed threads [82].

www.manaraa.com

4 COMMUNICATION MODELS 10

4.1.4 Analysis

Shared data models focus on making the same data seamlessly accessible from multiple

nodes. This focus blends together multiple nodes from the programmer’s perspective,

presenting both benefits and drawbacks. On the positive side, the programmer may ignore

node divisions and allow the toolkit free reign to optimize the application. Unfortunately

the toolkit is not always capable of producing acceptable behaviour, and the blending

can make it difficult for a programmer to isolate and fix problems.

Algorithms and programming techniques developed for concurrent systems generally

have to deal with issues of non-uniform memory access (NUMA). Many of these tech-

niques remain applicable in distributed shared data systems, though throughputs and

latencies vary far more. Some early shared data toolkits were even designed with the ob-

jective of allowing networks of computers to be programmed as a single multi-processor

(e.g. Amber [26]).

The high level expression of behaviour provided by a shared data model would theo-

retically be ideal for optimisation by a toolkit. Automatic compile- and run-time tuning

have been provided by a variety of tools (e.g. in Orca [4] and Pangaea [76]). While the

gains are significant, they still can not guarantee good behaviour without programmer

intervention [55]. Further, the complete node abstraction implied by the shared data

model may make it more difficult to isolate and correct situations that the toolkit can

not optimise.

In a large distributed system, particularly one involving mobile nodes and unreliable

connections, partial failure is a major problem. Dealing with these failures in a shared

data system is particularly hard, because the conceptual model conceals any distribution

and replication of values is concealed by the model. Not only may groups of values spon-

taneously disappear, but the groups may vary as the toolkit rearranges the distribution.

www.manaraa.com

4 COMMUNICATION MODELS 11A B C D
Figure 3: Conceptual view of Message Passing. Communication between components A

and B must be via asynchronous message.

4.2 Message Passing

The message passing programming model provides asynchronous communication between

components: a message is transmitted from sender to receiver without waiting for a reply,

as shown in Figure 3. As a result, this model is easy to implement on common networks,

but application built on a message passing system often require algorithms different from

those used in sequential programming environments [67]. Message passing models may

be categorised based on their queueing model, threading model and read mechanism.

When a message arrives at a component that is not ready, the message will generally

be placed in a queue to await processing. The queueing model defines the order in which

these messages will be delivered, and how much control the receiver has. The simplest

approach makes use of a FIFO queue, processing messages in exactly the order they were

delivered (e.g. DACIA [56]). More flexible models can allow messages to be prioritised,

discarded or deferred (e.g. Hybrid [63]).

The threading model describes how threads are allocated to process messages, and

how concurrent threads are organised. The simplest threading models assign a single

thread to each node, allowing only one message to be in processing at a time (e.g.

Charm [47]). A more common and powerful approach is to assign a single thread to

each object (e.g. DACIA [56] and Thal [50]). These approaches are commonly described

as static threading models, because the number of threads does not change in response

to messages between existing components. Dynamic threading models, on the other

www.manaraa.com

4 COMMUNICATION MODELS 12

hand, may create threads in response to messages. A simple, though inefficient, dynamic

threading model is to begin processing every message immediately when it is received.

More flexible approaches provide controls on the object to determine which messages

may be processed concurrently, for example via reader/write locks as discussed in Thal

[50].

The read mechanism determines how the component code receives messages. Many

systems simply invoke a method on the component, as indicated in the message, when

the message is processed (e.g. Cool [25] and DACIA [56]). Other approaches permit an

executing method to wait for a message with particular properties to arrive (e.g. Active

Objects [63] and Thal [50]).

4.2.1 Charm++

Charm++ [47] provides a variant of C++ that includes constructs for specifying concur-

rency, asynchronous communication, and replication. Charm++ follows from research

begun in the late eighties on the Charm Parallel Programming System [46]. Charm and

Charm++ provide similar conceptual models, but Charm++ is more completely object-

oriented. The design of Charm++ focuses on providing dynamic load balancing and

latency tolerance, while striking a balance between unnecessary complexity and hiding

performance costs from the programmer.

Programs in Charm++ are built around actors. Each actors is a single object with

an associated logical thread, and one or more entry point functions. Messages received

for the actor are queued and delivered by executing the appropriate entry point function

with a record parameter. To allow distributed algorithms to be expressed more simply

and efficiently, Charm++ also provides some shared data constructs.

www.manaraa.com

4 COMMUNICATION MODELS 13A B C D
Figure 4: Conceptual view of Remote Procedure Call. A may make a call on B as if it

were a local component.

4.2.2 Analysis

The selection of pure message passing toolkits that use an object-oriented structure is

limited relative to those that take a procedural approaches. In many cases (e.g. Agent

TCL [38] and PVM [34]), message passing is provided as a secondary model, augmenting

one of the other communication models. This appears to be related to the difficulty

of expressing common synchronous constructs, like method return values, in a purely

asynchronous model.

4.3 Remote Procedure Call

Remote procedure call (RPC) models attempt to emulate local method invocations: the

logical thread that performs a remote invocation waits until it completes or fails. Con-

ceptually, method invocations cross node boundaries as synchronous calls, as shown in

Figure 4.

4.3.1 Java RMI

Java RMI [78] provides remote invocation of Java objects as part of the standard class

library. Almost all of the semantics of local method calls are maintained in Java RMI,

though a few serious differences are introduced. The most severe appears in the behaviour

of Java’s built-in synchronization primitive: it locks the local proxy rather than the

www.manaraa.com

4 COMMUNICATION MODELS 14

central object, producing the possibility of distribution-dependant faults. Communica-

tion in Java RMI is strictly synchronous: the caller of a method will always wait for it

to return before continuing.

As in local Java, logical threads are created explicitly via instances of java.lang.Thread.

The logical threads may cross node boundaries during method calls. An exception is

thrown to the caller of a remote method if the invocation fails, either totally or partially.

While Java RMI is a relatively low-level toolkit with minimal transparency, it serves as

the foundation for more powerful systems like J-Orchestra [80] and JavaParty [69].

4.3.2 Analysis

RPC models are most obviously useful when a distributed systems toolkit has been

designed around an existing imperative programming language. Some common systems,

like Java RMI, treat invocations that may be remote differently from those that must

be local. Others, like J-Orchestra [80], endeavour to make the local and remote objects

indistinguishable.

In some cases, object-structured shared data models could also be described as remote

procedure call. The primary difference is what portion of the system conceptually crosses

node boundaries: in shared data the values are accessible directly, while in RPC the

logical thread moves to the remote node. This difference is primarily relevant to the

programmer’s expectations of performance and partial failure, as modification to the

shared data would not conceptually occur until it was available locally.

4.4 Mobile Agents

The mobile agent programming model focuses on the movement of agents throughout

the system. When an agent needs to acquire information from a value that not present

on its local node (Figure 5(a)) it moves to the same node as the value (Figure 5(b)).

www.manaraa.com

4 COMMUNICATION MODELS 15A B C D
(a) Agent A is on a separate node

A B C D
(b) Agent A moves to communicate with B

Figure 5: Conceptual views of Mobile Agents. Component A must move to the same
node as B to communicate with it.

Each agent is conceptually a logical thread with aggregated values. In a pure agent

system, the agents may access only data in their local node. Computational algorithms

in this model are often similar to the equivalent shared data algorithm [67], making them

substantially simpler than message passing. Some agent models specify all moves explic-

itly (e.g. DSC [67] and MESSENGERS [33]), while others move the agents automatically

in response to data access (e.g. Obliq [23]) or node availability.

Mobile agent models with implicit movements will often appear similar to remote

procedure call and shared data models. The distinguishing factor is again based on the

conceptual node crossing: mobile agents relocate a logical thread and associated data

across a node boundary, but do not necessarily return to the originating node.

4.4.1 Obliq

Obliq [23] provides an elegant mobile agent programming model, that also allows remote

procedure calls to be represented. Communication between nodes takes the form of

closures, which combine code to execute with the values it requires. In this model,

remote procedure calls become simply a closure where the only free values are parameters

or global variables.

Actors are created through explicit language features, while migration is performed

implicitly. Obliq’s relatively simple language can simple represent a surprising variety of

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 16

distributed algorithms [23].

4.4.2 Analysis

Mobile agent toolkits represent a compromise between message passing and shared data

models. In general a component must specify the nodes to which it will move, though

some systems allow querying the location of another component or automatic movement

when accessing a remote value. This means that while the application programmer is

not always forced to consider node boundaries, they are visible in the conceptual model.

As a result, the mobile agents are more complex and flexible than shared data, but far

more amenable to traditional algorithms and architectures than message passing.

Exposing nodes to the programmer limits the operations that may be performed by

the toolkit, removing some of the flexibility possible in other models and requiring the

programmer to be aware of any changes. For example, in a system with both desktop and

handheld nodes, an application would need to carefully avoid moving computationally-

expensive tasks to the handhelds. To reduce this problem, some toolkits introduce virtual

nodes: clusters of values to which an agent may migrate without knowing the physical

node upon which they reside (e.g. Dejay [21]). This approach, unfortunately, raises the

same diagnostic and failure problems found in shared data models.

Research in mobile agent-based toolkits is relatively recent, and has not yet reached

a wide industrial audience. As the model compares well with others [67], this appears to

be related to a lack of commercial toolkits and experience.

5 Distribution Transparencies

The complexity of distributed systems, particularly when they must change over time,

leads us to an important property of toolkits: what aspects of distributed architecture and

evolution may be ignored by an application programmer. These aspects may be present

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 17

J-Orchestra [86]Orca [9]Linda [32]Charm++ [48]Java RMI [79]Java EJB [31].Net Remoting [67]Obliq [23]Agent TCL [38]PVM [34]MESSENGERS [33]
Access Location Migration RelocationReplacementReplicationPersistenceTransactionFailureShared DataMessage PassingRPCMobile Agents Full TransparencyPartial TransparencyNo TransparencyLegend

Figure 6: Distribution transparencies in selected toolkits

in any communication model, though particular forms of model are more ameanable

to particular transparences: for example, shared data communication models inherently

provide location transparency.

The ISO Reference Model for Open Distributed Processing (RM-ODP) defines dis-

tribution transparencies, aspects that are important in distributed systems and may be

useful to conceal or abstract [43]. The following transparencies, except for replacement,

are based on those specified in RM-ODP. Replacement transparency is added to include

general configuration techniques in the wider family of distributed systems evolutions.

The degree to which each of the transparencies is present in a particular distributed

systems toolkit hints at the level of separation between the application programmer and

the underlying implementation. Figure 6 shows a summary of the transparencies provided

by selected toolkits discussed in this paper.

It is often possible to provide functionality equivalent to the transparency within a

toolkit. For example, both Java RMI and .Net Remoting could reasonable be extended

to support migration transparency, by replacing parts of their infrastructures.

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 18

Some transparences tend to be associated, for example location and migration trans-

parencies. These tendencies appear to reflect the intent of the developers, rather than a

necessary dependency.

5.1 Access Transparency

Given the variety of modern computing devices, allowing the interaction of fundamentally

different nodes is particularly important. Access transparency conceals the differences

between heterogeneous nodes: e.g. different operating systems, data representations,

display devices, machine languages. Some forms of access transparency focus on local

capabilities, for example the TrollTech Qt library provides cross-platform access to user

interface and networking facilities. Other forms of access transparency focus on the

interaction between nodes: e.g. SOAP provides a uniform data representation and com-

munication protocol, and the Java virtual machine [54] allows the same bytecode to be

executed on any system.

Access transparency is particularly useful in large, unmanaged distributed systems

or those involving lightweight devices. In a large system, the expense of maintaining

completely homogeneous nodes or maintaining new implementations for each type of

node may be prohibitive: consider implementing a web server if every operating system

used an incompatible HTTP protocol. Lightweight and embedded devices provide a wider

range of hardware and capabilities than are typically found in desktops, so exasperate

the problem of multiple implementations.

5.2 Location Transparency

Location transparency hides the nodes upon which other values reside, both during an

initial lookup and later interaction. The objective is that the application does not need

to specify the node upon which a component can be found, as shown in Figure 7. For

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 19? A B
Figure 7: Location transparency. Component B does not need to know which node A

exists on.

example, Microsoft .Net Remoting [65] allows remote values to be treated as local refer-

ences, concealing the address of the remote node and any necessary network connections.

The C language binding of Sun RPC [77] provides very little location transparency, as

connections are explicitly created by server address and remote references are not sup-

ported.

Traditional techniques for providing location-transparent lookup have involved either

centralised or fully replicated repositories [27]. Structured distributed repositories appear

where the identifiers of objects can be decomposed in a hierarchal fashion, for example in

DNS names. A more recently popularised technique is the use of distributed hash tables

(DHTs): the actual location of each object is stored on a subset of the nodes determined

by hashing a well-known property of the object (often the name or a unique identifier)

[10]. When the object is moved, only the responsible subset need to be notified.

Location transparency serves to separate the application logic from the physical dis-

tribution, so proves useful in large or dynamic environments. Web browsers demonstrate

the advantage of location transparency: rather than require the user to memorise IP

addresses, a DNS lookup is used to resolve human-readable domain names.

5.3 Migration Transparency

While a distributed system is running, it can become useful to migrate a value from one

node to another as shown in Figure 8. This allows the system to adapt in response to

events like a changing environment or user requests. For example, a word processor could

be moved from a laptop to a desktop when the user wishes to use the larger display.

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 20migrate A from 1 to 22 1 2 A1 A
Figure 8: Migration transparency. Component A may move transparently between nodes.relocate A from 1 to 22 1 2 A1 A B B
Figure 9: Relocation transparency. Component A may move between nodes without

breaking B’s connection to it.

Migration transparency hides from a value or logical thread the fact that it has moved

between nodes. While the application programmer may need to perform an operation

to trigger the move, it would not be necessary to embed special logic in the value to

be moved. Partial migration transparency may require some special logic, for example

handling marshaling or suspend/resume in application code [71].

Most toolkits that provide migration transparency will automatically maintain out-

going connections from the moving component (e.g. Emerald [44] and Orca [6]). If the

system also provides location transparency, it will need to account for the movements.

5.4 Relocation Transparency

When a value is migrated between nodes as shown in Figure 9, other values that hold

references to it will need some means to communicate with its new position. Reloca-

tion transparency hides from a value or logical thread the fact that another value has

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 21relocate A from 1 to 22 1 2 A1 A B Bproxy
Figure 10: Relocation using the breadcrumbs technique. Rather than update B’s connec-

tor, a proxy is created at A’s old location.

moved between nodes. The move may have been explicitly requested by the applica-

tion programmer, but housekeeping operations such as updating references or redirecting

messages should be automatic.

A variety of techniques are commonly used to implement relocations, which may

be visible when the toolkit provides incomplete relocation transparency. Conceptually,

relocation consists of suspending all operations on the object to be moved, moving the

object, updating all references to it, and then resuming operations.

The conceptual algorithm could be implemented directly, but imposes a substantial

cost when moving objects with many connections. A simple technique used to avoid

updating references is leaving a proxy object at each past location of a mobile object (see

Figure 10). The primary drawback of such a trail is the large number of proxies that

may be required to trace a highly mobile object, as in Obliq [23].

Relocation transparency is most commonly found in combination with location and

migration transparency, but can be useful independently. For example, the contents of a

document could be marshaled and copied from a laptop to a desktop while still allowing

the word processor on the laptop to change the document.

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 22replace A with A’A’A B B
Figure 11: Replacement transparency. A may be replaced with a new component A’

without breaking connections to it.

5.5 Replacement Transparency

Software updates or a changing environment may make it necessary to replace the im-

plementation of a value, as sketched in Figure 11. Such modifications in a traditional

software package, for example applying security patches to Microsoft Windows, could re-

quire completely restarting the modified node or group of nodes. Replacement provides

the ability to replace the implementation of a value without restarting the distributed

system, and potentially without the change being visible to other values or threads.

Replacement transparency hides from a value the fact that another value or group of

values have been replaced with a different implementation. This transparency has two

primary points of complexity: how references are updated to the new implementation,

and how the state of the old and new implementations is synchronised. Reference updates

during replacement are very similar to those encountered during relocation, and share

many of the implementations.

Maintaining behaviour during value replacement requires the ability to force the new

value into a state that observationally equivalent to the old one. While some work has

been done in automating such operations, a general solution still requires a programmer

to define migration behaviour [66]. For example, an automatic tool might infer that fields

with the same names should be copied, but be unable to guess initial values for added

fields.

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 23A B AA
Figure 12: Replication transparency. Component B does not need to consider which A it

is connecting to or interacting with.

Replacing groups of components is necessary for general replacement: for example, to

apply an update that refactors a single component into two, or vice versa. This capability

was not considered in any of the reviewed systems.

In general, replacement transparency is not dealt with except in research directly

approaching the problem of major reconfiguraion or upgrades (e.g. Argus [20] and Djinn

[60]), rather than generally usable distributed systems toolkits.

5.6 Replication Transparency

Maintaining multiple replicas of a value, as shown in Figure 12, can provide significant

improvements in performance and reliability [12, 7, 51]. For example, a password au-

thentication server could maintain a full copy of a password database to ensure quick

response and avoid failure if the database server crashed. Establishing and maintaining

observational equivalence across the replicas is, in general, an open research problem.

Replication transparency provides multiple copies of a value that appear to be a single

value. Partial replication may be provided without a complete copy, for example through

the use of caches (e.g. Clock [37] and Munin [13]), but may still be fully transparent.

Providing this transparency divides into three aspects: creating, maintaining, and

accessing the replication [15]. Creating the replication involves duplicating all or part of

the value in question, and setting up consistency maintenance. Consistency maintenance

keeps the states of the various values the same, within bounds depending on the exact

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 24move A to and from persistent storageA B B A
Figure 13: Persistence transparency. Component A may transparently move to and from

persistent storage, without affecting its state or connections.

concurrency protocol (e.g. The Grid Protocol [28], release consistency [49], and rule-

based object coordination [2]). Accessing the replication requires interacting with the

correct value, for example by identifying a nearby copy [72].

5.7 Persistence Transparency

Saving and loading values to and from persistent storage is required by almost all appli-

cations. These storage formats may be the result of marshaling a graph of values (e.g.

Java Serialization), defined by formal standards (e.g. the OpenDocument format [64]),

or simply ad-hoc storage formats.

Persistence transparency conceals from a value, and logical threads interacting with

the value, its movement or existence in different types of storage. The most common form

of persistence transparency is virtual memory provided by an operating system, in which

inactive data is paged out to the hard disk. Other approaches could allow operations

to be performed directly on the persistent storage, for example to manipulate a stored

object without completely loading it.

Applications of persistence transparency include working with data that is too large

to fit in main memory or saving information to disk without requiring special code. A

wide variety of systems have been developed for storing objects in an entity-relational

database, for example the Java Persistence API [31] being developed as part of EJB 3.0.

www.manaraa.com

5 DISTRIBUTION TRANSPARENCIES 25

5.8 Transaction Transparency

When multiple logical threads seek to interact with the same value, or group of val-

ues, it is often necessary to restrict their concurrency to prevent unexpected outcomes.

For example, to avoid deadlock or prevent inconsistent data being returned from a data

structure. Such concurrency control is not an easy problem in a non-distributed system,

and is further complicated by replication, inconsistent communication times, and partial

failure. A commonly cited example of the importance of transaction handling appears

in Massively Multiplayer Online Game (MMOG) shops when multiple players simulta-

neously try to purchase a unique item. The application must ensure that one, and only

one, player receives the item and pays for it.

Concurrency control algorithms serve to reduce the concurrency that must be con-

sidered by the application programmer. For example, the Java synchronized primitive

and .Net apartment threading employ mutual exclusion to ensure only a single thread

manipulates an object at a time. More complex algorithms can permit limited concur-

rency (e.g. read/write lock), or provide a means to resolve conflicts when they occur (e.g.

rollback, forward correction).

Transaction transparency conceals the selection, use and behaviour of a transaction

algorithm from the application programmer. For complete transparency, this would re-

quire the toolkit to enter, commit, abort and restart transactions automatically. Less

complete approaches require the programmer to identify the start and end of transac-

tions, and may expose algorithm-specific behaviour. Organising multiple heterogeneous

concurrency control algorithms into a single model is relatively difficult, but has been

approached by work like Silva et al [75].

www.manaraa.com

6 CONFIGURATION 26

5.9 Failure Transparency

In a large or unmanaged distributed system, it is virtually ensured that some portion

will fail unexpectedly. Recovering from failure requires identifying the cause of the fault,

and evolving the system at runtime to maintain reasonable behaviour. For example, a

network connection may fail or a computer may be suddenly powered off.

Failure transparency hides faults, errors and recoveries from the affected values and

logical threads. Where it is not possible to completely conceal the failure, it may be

indicated to the application in a fashion consistent with the programming model. For

example, completely losing network connectivity in a pure mobile agent model would

result in the inability of local agents to change nodes.

Because of the complexity of distributed systems, identifying and recovering from

arbitrary failure is a fundamentally difficult problem. For example, a TCP/IP network

connection that drops might be reestablished automatically, but a tightly-configured

firewall may be very difficult to circumvent. Further, the system must decide when to

notify the user of severe failures, for example if a remote node in a collaborative editing

session is unreachable.

When failure and other transparencies are combined, complex problems can theoret-

ically be concealed. For example, responding to the failure of a remote node by using

cached values while switching to replicas of its objects.

6 Configuration

Much of the complexity of a object-based distributed system relates to how components

are selected, connected and placed on nodes. The configuration of a distributed system

deals with this organisation, and how it evolves over time.

Flexible configuration is crucial when devices with different capabilities or environ-

ments are present in the system. For example, while a collaborative editing system

www.manaraa.com

6 CONFIGURATION 27

based on desktops might require Microsoft Word, extending the same requirement to

lightweight PDAs would be unacceptable. A better solution would provide a different

node configuration for the PDAs, with lower requirements. As the number of different

conditions grows, designing a complete node configuration for each possible situation be-

comes infeasible. Dealing with these situations requires combining many small decisions

into a configuration.

Changes over time may also be a motivation for configuration changes. For example

a groupware application should support users joining and leaving a collaboration. Other

changes are useful in mobile devices, for example CARISMA [22] allows an image pro-

cessing application to automatically switch between color and black-and-white display

depending on available power.

Traditionally, configuration was either performed implicitly or via a configuration

API. More recent approaches have introduced dedicated configuration languages, auto-

mated configuration, and combinations of the different techniques.

6.1 Implicit Configuration

In some cases, it is possible to describe the distributed behaviour of a program completely

in its source code. These languages allow an implicit configuration to be built from the

interaction of objects. This approach is most common in special-purpose programming

languages for distributed systems (e.g. Obliq [23]), or when legacy programs need to be

distributed (e.g. JavaParty [69]).

Implicit configuration based on existing programming languages is often described as

intuitive to programmers, because it provides behaviour similar to non-distributed pro-

gramming. If the programming language is similar, or identical, to common languages it

may be possible to retrofit existing applications: distributing a non-distributed applica-

tion, making it multi-user application, or simplifying an existing distributed application.

www.manaraa.com

6 CONFIGURATION 28

The transparency of distribution may also be a drawback, as there is no clear sepa-

ration between distributed and non-distributed aspects of the application. Furthermore,

subtle differences between the local and distributed semantics may create severe errors:

both Java RMI and .Net Remoting change the behaviour of object monitors to one which

can result in distribution-sensitive deadlocks.

The choice of language in an implicit configuration system may limit the distributed

behaviours that can be supported. Common C-like syntax, for example, can not directly

express asynchronous messages or synchronisation of objects 1. Representing either be-

haviour requires modifying the language or introducing some other form of configuration.

6.2 Configuration API

Rather than integrating distributed behaviours into the syntax of a language, it is possible

to specify all distributed configuration via an API or class library. This approach allows

an object to explicitly control, or modify, its distributed behaviour without being limited

by its programming language [16]. Configuration APIs are typically defined for toolkits

that support one or more existing programming languages (e.g. PVM [34]).

Configuration APIs may be easier to learn than implicit configuration because they

do not modify the semantics of the programming language, and are simply another

library. As a result, a programmer need only deal with the API when implementing the

distributed portions of an application. The opposing argument is that minor changes in

the programming language are easier to learn than a completely new, and often complex,

library.

The primary drawback of configuration APIs is that they often require an awkward

syntax for expressing simple constructs. For example, Figure 14 shows a simple data

broadcast in PVM.

1While object aliasing can provide total identity, it can not represent partial synchronisation or
merging of distinct objects.

www.manaraa.com

6 CONFIGURATION 29

pvm_initsend(PvmDataRaw);

pvm_pkint(&intslen, 1, 1);

pvm_pkint(ints, intslen, 1);

pvm_pkint(&fltslen, 1, 1);

pvm_pkfloat(flts, fltslen, 1);

pvm_mcast(ids, nids, 1);

Figure 14: Broadcast of two arrays in PVM from [34]

In highly-dynamic languages, including many scripting languages (e.g. Python), a

configuration API may provide proxy objects that can be invoked using the host pro-

gramming language. This allows a more familiar syntax for manipulating remote objects,

but encounters many of the problems of implicit configuration.

Combining implicit and API-based configuration leads to a technique that is typi-

cally described as reflection: default distributed behaviour is inferred from programming

language semantics, but may be inspected and customised through the use of an API.

Reflective middleware has become increasingly popular as a flexible extension of common

industrial middleware [18].

6.3 Configuration Language

An alternative to describing the architecture of the system in an implementation language

is to define it using an external language. These configuration languages include high-

level graphical representations (e.g. ClockWorks [36]), special-purpose languages (e.g.

MANIFOLD [68] and Regis [59]), and attributes added to existing languages (e.g. J-

Orchestra [83] and Munin [24]).

Configuration languages provide a clean separation between programming the be-

haviour of a component, and the organisation of multiple components. While this sepa-

ration decreases the complexity of most tasks, it requires special handling for evolutions

triggered by application logic. Unlike implicit configuration, the programming language

will not restrict the types of inter-value communication that may be expressed. Further,

www.manaraa.com

6 CONFIGURATION 30

it may be possible to retrofit existing source code with complex distributed behaviour.

A graphical configuration language provides an environment that is very different

from that used in traditional development. With appropriate tool support, a graphical

tool may be significantly easier to learn and use than an equivalent textual language [61].

Textual configuration languages, either as special-purpose languages or attributes,

tend to be declarative in nature (e.g. Darwin [58]). This approach is generally described

as less complex than an imperative configuration language, but may be less familiar to

an application programmer.

The primary drawback to a special-purpose configuration language is that it requires

an application programmer to learn and use an additional language. Both languages are

often required before even a primitive prototype can be tested.

6.4 Automatic Refinement

As the organisation of distributed systems becomes more complex, increasing focus ap-

pears on automating changes. For example, many shared data toolkits adapt the distri-

bution of a value based on its usage: some simply by moving the data to the node that

used it most, or more flexibly by changing its replication and consistency maintenance

algorithm.

Automatic refinement is often combined with one of the other configuration methods,

so that a programmer may manually tweak the system. Three common categories of

automatic refinements appear in the literature, differentiated by their information sources

and effects: static, statistical and structural.

Static refinement takes place before the distributed system is started by extract-

ing likely interaction patterns from the application. This approach draws heavily on

techniques used to optimise parallel programs on multi-processors. Banerjee [11] and

Hiranandani [40] present samples of such optimizations.

Statistical refinements are performed while the system is running, and are based on

www.manaraa.com

6 CONFIGURATION 31

various performance and load measurements. The techniques deployed in this area are

similar to those found in distributed databases [62]. Common statistical refinements can

move groups of values to reduce network communications (e.g. AMPI [14]), or change

the replication of a value based on its access pattern (e.g. ADR [85] and Active Harmony

[41]). The primary limitation of statistical refinements is that they deal with relatively

low-level changes, and are often difficult to apply to application components.

Structural refinements are the most powerful and complex approach to automated

refinement. By combining application-level attributes with statistical data gathering,

these refinements focus on wide-reaching and complex changes to occur in the running

system. For example, CARISMA [22] presents a constraint-based system that switches

between colour and black-and-white display modes depending on available battery power.

6.5 Analysis

The two primary problems in configuration is identifying an appropriate improvement,

and then applying the necessary configuration changes. Traditional approaches using

implicit configuration require that the toolkit be modified to support additional config-

urations (e.g. Orca [6]). More flexible approaches, most commonly in the middleware

sphere, have introduced configuration APIs that allow the implementation details to be

customized (e.g. OpenORB [17]). Configuration languages allow a high-level model to

be provided, but still differ substantially from the programming language and communi-

cation model. Automatic refinement presents a potential solution to these problems, but

remains limited and difficult to extend.

These problems suggest that a system should provide a simplified model not only for

high-level application programming, but also for configuration. While some aspects of

this approach appear in work like by Blair et al [16], the model exposed by reflection

remains tied tightly to the particular middleware. Allowing automated refinements to

be defined between two communication models, one associated with the high-level model

www.manaraa.com

7 CONCLUSION 32

exposed to the application and one tied to the implementation, could drastically simplify

the task of controlling application behaviour.

7 Conclusion

Given the wide variety of techniques and systems developed through distributed systems

research, it would appear that most variations have already been explored. Indeed,

toolkits supporting multiple models, many transparencies and clean high-level semantics

are widely available. Industrial uptake has been mostly limited to fairly simple toolkits

that integrate with preexisting programming languages.

The weakness of existing solutions appears primarily when dealing with adaptation,

which was far less important in traditional distributed systems. Common approaches

allow either low-level changes driven by the toolkit, or high-level changes coded explicitly

in the application. A few constraint-based approaches show promise in simplifying the

high-level changes, but still have trouble expressing wide-spread structural modifications.

The greatest limitation appears to be the vast gap between the conceptual model ex-

posed to the application programmer and the implementation details necessary to express

changes. Bridging this gap requires a simple model that can represent the incremental

decisions made between the high level conceptual environment and the actual implemen-

tation. Given such a model, adaptive refinements could be combined and applied at any

level, independent of the actual middleware.

While tremendous research interest has been directed at toolkits for programming

distributed systems over the past decades, it is far from a solved problem. Indeed, the

popularity of low-powered mobile devices prevents many of the traditional techniques

from even being applicable. Automating the adaptation of a flexible architecture demon-

strates promise in providing for these systems, but remains limited in capability.

www.manaraa.com

REFERENCES 33

References

[1] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@home:

An experiment in public-resource computing. Communications of the ACM,

45(11):56–61, 2002.

[2] J. Andreoli, H. Gallaire, and R. Pareschi. Rule-based object coordination. In

ECOOP ’94: Selected Papers from the ECOOP’94 Workshop on Models and Lan-

guages for Coordination of Parallelism and Distribution, Object-Based Models and

Languages for Concurrent Systems, pages 1–13, London, UK, 1995. Springer-Verlag.

[3] H. Assenmacher, T. Breitback, P. Hübsch, and V. Scharz. PANDA – supporting

distributed programming in C++. In ECOOP ’93: Proceedings of the 7th European

Conference on Object-Oriented Programming, pages 361–383. Springer-Verlag, 1993.

[4] H. E. Bal and M. F. Kaashoek. Object distribution in Orca using compile-time and

run-time techniques. In Proceedings of the Eighth Annual Conference on Object-

Oriented Programming Systems, Languages, and Applications (OOPSLA ’93), pages

162–177, 1993.

[5] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Experience with distributed pro-

gramming in Orca. In IEEE CS International Conference on Computer Languages,

pages 79–89, 1990.

[6] H. E. Bal, M. F. Kaashoek, and A. S. Tanenbaum. Orca: A language for parallel

programming of distributed systems. IEEE Transactions on Software Engineering,

18(3):190–205, 1992.

[7] H. E. Bal, M. F. Kaashoek, A. S. Tanenbaum, and J. Jansen. Replication techniques

for speeding up parallel applications on distributed systems. Concurrency Practice

& Experience, 4(5):337–355, August 1992.

www.manaraa.com

REFERENCES 34

[8] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum. Programming languages for dis-

tributed computing systems. ACM Computing Surveys, 21(3):261–322, 1989.

[9] H. E. Bal and A. S. Tannenbaum. Distributed programming with shared data. In

Proceedings of ICCL — International Conference on Computer Languages, pages

82–91, Miami, Florida, 1988. IEEE Computer Society Press.

[10] H. Balakrishnan, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica. Looking up

data in P2P systems. Communications of the ACM, 46(2):43–48, 2003.

[11] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A. Padua. Automatic program

parallelization. Proceedings of the IEEE, 81(2):211–243, 1993.

[12] D. Barbara and H. Garcia-Molina. Replicated data management in mobile environ-

ments: Anything new under the sun? In Applications in Parallel and Distributed

Computing, pages 237–246, 1994.

[13] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive software cache man-

agement for distributed shared memory architectures. In Proceedings of the 17th

Annual International Symposium on Computer Architecture (ISCA’90), pages 125–

135, 1990.

[14] M. Bhandarkar, L. Kal, E. Sturler, and J. Hoeflinger. Object-based adaptive load

balancing for MPI programs. Parallel Processing Laboratory, Technical Report 00-

03, September 2000.

[15] K. P. Birman. Building Secure and Reliable Network Applications. Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1996.

[16] G. S. Blair, G. Coulson, A. Andersen, L. Blair, M. Clarke, F. Costa, H. Duran,

N. Parlavantzas, and K. A. Saikoski. A principled approach to supporting adaptation

www.manaraa.com

REFERENCES 35

in distributed mobile environments. In N. P. and R. I., editors, Proceedings of the

5th International Symposium on Software Engineering for Parallel and Distributed

Systems (PDSE’2000), pages 3–12, Limerick, Ireland, June 10-11 2000. IEEE.

[17] G. S. Blair, G. Coulson, L. Blair, H. Duran-Limon, P. Grace, R. Moreira, and

N. Parlavantzas. Reflection, self-awareness and self-healing in OpenORB. In WOSS

’02: Proceedings of the 1st Workshop on Self-Healing Systems, pages 9–14, New

York, NY, USA, 2002. ACM Press.

[18] G. S. Blair, G. Coulson, and P. Grace. Research directions in reflective middleware:

the Lancaster experience. In Proceedings of the 3rd Workshop on Adaptive and

Reflective Middleware, pages 262–267, New York, NY, USA, 2004. ACM Press.

[19] Blizzard Entertainment. World of Warcraft Surpasses Five Million Customers

World-Wide, December 2005.

[20] T. Bloom. Dynamic module replacement in a distributed programming system.

Technical Report MIT/LCS/TR-303, Massachusetts Institute of Technology, 1983.

[21] M. Boger, F. Wienberg, and W. Lamersdorf. Dejay: Unifying concurrency and

distribution to achieve a distributed Java. In Proceedings of TOOLS Europe ’99,

Nancy, France, June 1999. Prentice Hall.

[22] L. Capra, G. S. Blair, C. Mascolo, W. Emmerich, and P. Grace. Exploiting reflection

in mobile computing middleware. SIGMOBILE Mobile Compututing & Communi-

cation Review, 6(4):34–44, 2002.

[23] L. Cardelli. A language with distributed scope. In Conference Record of POPL ’95:

22nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, San Francisco, California, pages 286–297, 1995.

www.manaraa.com

REFERENCES 36

[24] J. B. Carter, J. K. Bennett, and W. Zwaenepoel. Implementation and performance of

Munin. In Proceedings of the 13th ACM Symposium on Operating Systems Principles

(SOSP-13), pages 152–164, 1991.

[25] R. Chandra, A. Gupta, and J. Hennessy. Data locality and load balancing in COOL.

In Proceedings of the Fourth ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, San Diego, CA, 1993.

[26] J. S. Chase, F. G. Amador, E. D. Lazowska, H. M. Levy, and R. J. Littlefield.

The Amber system: Parallel programming on a network of multiprocessors. In

Proceedings of the 12th ACM Symposium on Operating Systems Principles, pages

147–158, Litchfield Park AZ USA, 1989.

[27] D. R. Cheriton and T. P. Mann. Decentralizing a global naming service for im-

proved performance and fault tolerance. ACM Transactions on Computer Systems,

7(2):147–183, 1989.

[28] S. Y. Cheung, M. H. Ammar, and M. Ahamad. The Grid Protocol: A high perfor-

mance scheme for maintaining replicated data. Knowledge and Data Engineering,

4(6):582–592, 1992.

[29] R. S. Chin and S. T. Chanson. Distributed, object-based programming systems.

ACM Computing Surveys, 23(1):91–124, 1991.

[30] N. Davies, A. Friday, S. P. Wade, and G. S. Blair. An asynchronous distributed

systems platform for heterogeneous environments. In EW 8: Proceedings of the 8th

ACM SIGOPS European Workshop on Support for Composing Distributed Applica-

tions, pages 66–73, New York, NY, USA, 1998. ACM Press.

[31] L. DeMichiel and M. Keith. JSR 2200: Enterprise JavaBeans, Version 3.0, Java

Persistence API. Sun Microsystems, 2005.

www.manaraa.com

REFERENCES 37

[32] A. Douglas, A. Rowstron, and A. Wood. Linda implementation revisited. In

P. Nixon, editor, Proceedings of the 18th World OCCAM and Transputer User Group

Meeting. IOS Press, 1995.

[33] M. Fukuda, L. Bic, M. B. Dillencourt, and F. Merchant. Intra- and inter-object coor-

dination with MESSENGERS. In Proceedings of the First International Conference

on Coordination Languages and Models (COORDINATION ’96), pages 179–196,

London, UK, 1996. Springer-Verlag.

[34] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. S. Sunderam.

PVM: Parallel Virtual Machine: A Users’ Guide and Tutorial for Networked Parallel

Computing. MIT Press, Cambridge, MA, USA, 1994.

[35] D. Gelernter. Generative communication in Linda. ACM Transactions of Program-

ming Languages and Systems, 7(1):80–112, 1985.

[36] T. Graham, C. Morton, and T. Ursnes. ClockWorks: Visual programming of

component-based software architectures. Journal of Visual Languages and Com-

puting, 7(2):175–196, 1996.

[37] T. C. N. Graham, T. Urnes, and R. Nejabi. Efficient distributed implementation of

semi-replicated synchronous groupware. In Proceedings of the ACM Symposium on

User Interface Software and Technology (UIST’96), pages 1–10, Seattle, WA, USA,

November 1996.

[38] R. S. Gray. Agent Tcl: A flexible and secure mobile-agent system. In M. Diekhans

and M. Roseman, editors, Fourth Annual Tcl/Tk Workshop (TCL 96), pages 9–23,

Monterey, CA, 1996.

[39] I. J. Grimstead, N. J. Avis, and D. W. Walker. Automatic distribution of ren-

dering workloads in a grid enabled collaborative visualization environment. In SC

www.manaraa.com

REFERENCES 38

’04: Proceedings of the 2004 ACM/IEEE Conference on Supercomputing, page 1,

Washington, DC, USA, 2004. IEEE Computer Society.

[40] S. Hiranandani, K. Kennedy, and C.-W. Tseng. Compiler optimizations for Fortran

D on MIMD distributed-memory machines. In Supercomputing ’91: Proceedings of

the 1991 ACM/IEEE Conference on Supercomputing, pages 86–100, New York, NY,

USA, 1991. ACM Press.

[41] J. K. Hollingsworth and P. J. Keleher. Prediction and adaptation in Active Harmony.

Cluster Computing, 2(3):195–205, 1999.

[42] L. Iftode and J. P. Singh. Shared virtual memory: Progress and challenges. Pro-

ceedings of the IEEE Special Issue on Distributed Shared Memory, 87(3):498–507,

1999.

[43] ISO/IEC. ITU-T Rec. X.901 — ISO/IEC 10746-1 Open Distributed Processing -

Reference Model - Part 1: Overview, 1998.

[44] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the Emerald

system. ACM Transactions on Computer Systems, 6(1):109–133, February 1988.

[45] M. F. Kaashoek, R. Michiels, H. E. Bal, and A. S. Tanenbaum. Transparent fault-

tolerance in parallel Orca programs. In Proceedings of the Symposium on Experiences

with Distributed and Multiprocessor Systems III, pages 297–312, March 1992.

[46] L. Kale. Parallel programming with Charm: an overview. Parallel Program-

ming Laboratory, Technical Report PPL-TR-93-8, University of Illinois, Urbana-

Champaign, Department of Computing Science, July 1993.

www.manaraa.com

REFERENCES 39

[47] L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented

system based on C++. In OOPSLA ’93: Proceedings of the Eighth Annual Confer-

ence on Object-Oriented Programming Systems, Languages, and Applications, pages

91–108, New York, NY, USA, 1993. ACM Press.

[48] R. H. Katz. Adaptation and mobility in wireless information systems. IEEE Personal

Communications, 1:6–17, 1994.

[49] P. Keleher, A. L. Cox, S. Dwarkadas, and W. Zwaenepoel. An evaluation of software-

based release consistent protocols. Journal of Parallel and Distributed Computing,

29(2):126–141, 1995.

[50] W. Kim. ThAL: An Actor System for Efficient and Scalable Concurrent Computing.

PhD thesis, University of Illinois, Urbana-Champaign, 1997.

[51] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Providing high availability using

lazy replication. ACM Transactions on Computer Systems, 10(4):360–391, 1992.

[52] S. M. Larson, C. D. Snow, M. Shirts, and V. S. Pande. Folding@Home and

Genome@Home: Using distributed computing to tackle previously intractable prob-

lems in computational biology. Modern Methods in Computational Biology, 2003.

[53] K. Li and P. Hudak. Memory coherence in shared virtual memory systems. ACM

Transactions on Computer Systems, 7(4):321–359, 1989.

[54] T. Lindholm and F. Yellin. The Java virtual machine specification, 1999.

[55] N. Liogkas, B. MacIntyre, E. D. Mynatt, Y. Smaragdakis, E. Tilevich, and S. Voida.

Automatic partitioning: A promising approach to prototyping ubiquitous computing

applications. IEEE Pervasive Computing, July-Sep 2004.

www.manaraa.com

REFERENCES 40

[56] R. Litiu and A. Prakash. DACIA: a mobile component framework for building

adaptive distributed applications. SIGOPS Operating System Review, 35(2):31–42,

2001.

[57] K. P. C. Madhavan, L. L. Arns, and G. R. Bertoline. A distributed rendering

environment for teaching animation and scientific visualization. IEEE Computer

Graphics and Applications, 25(5):32–38, 2005.

[58] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software

architectures. In W. Schafer and P. Botella, editors, Proceedings of the 5th European

Software Engineering Conference (ESEC 95), volume 989, pages 137–153, Sitges,

Spain, 1995. Springer-Verlag, Berlin.

[59] J. Magee, N. Dulay, and J. Kramer. A constructive development environment for

parallel and distributed programs. In Proceedings of the International Workshop on

Configurable Distributed Systems, Pittsburgh, March 1994.

[60] S. Mitchell, H. Naguib, G. Coulouris, and T. Kindberg. Dynamically reconfigur-

ing multimedia components: A model-based approach. In EW 8: Proceedings of

the 8th ACM SIGOPS European Workshop on Support for Composing Distributed

Applications, pages 40–47, New York, NY, USA, 1998. ACM Press.

[61] K. Morton. Tool support for component-based programming. Master’s thesis, York

University, North York, Canada, 1994.

[62] M. Nicola and M. Jarke. Performance modeling of distributed and replicated

databases. IEEE Transactions on Knowledge and Data Engineering, 12(4):645–672,

2000.

www.manaraa.com

REFERENCES 41

[63] O. M. Nierstrasz. Active objects in Hybrid. In Proceedings of Object-Oriented

Programming Systems, Languages and Applications (OOPSLA ’87), pages 243–253,

New York, NY, USA, 1987. ACM Press.

[64] OASIS. Open Document Format for Office Applications (OpenDocument) v1.0, May

2005.

[65] P. Obermeyer and J. Hawkins. Microsoft .NET Remoting: A technical overview. In

MSDN Library. Microsoft Corporation, July 2001.

[66] A. Orso, A. Rao, and M. Harrold. A technique for dynamic updating of Java soft-

ware. In Proceedings of the IEEE International Conference on Software Maintenance

(ICSM 2002), pages 649–658, Montreal, Quebec, Canada, October 2002.

[67] L. Pan, L. F. Bic, and M. B. Dillencourt. Distributed sequential computing using

mobile code: Moving computation to data. In Proceedings of the 30th International

Conference on Parallel Processing (ICPP-01), Valencia, Spain, September 2001.

[68] G. A. Papadopoulos. Distributed and parallel systems engineering in MANIFOLD.

Parallel Computing, 24(7):1137–1160, 1998.

[69] M. Philippsen and M. Zenger. JavaParty — transparent remote objects in Java.

Concurrency: Practice and Experience, 9(11):1225–1242, November 1997.

[70] W. G. Phillips, T. C. N. Graham, and C. Wolfe. A calculus for the refinement and

evolution of multi-user mobile applications. In Proceedings of the Twelfth Inter-

national Workshop on Design, Specification and Verification of Interactive Systems

(DSV-IS ’05), 2005.

[71] G. P. Picco. Understanding, Evaluating, Formalizing, and Exploiting Code Mobility.

PhD thesis, Politecnico Di Torino, Italy, 1998.

www.manaraa.com

REFERENCES 42

[72] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby copies of repli-

cated objects in a distributed environment. In Proceedings of the ninth annual ACM

symposium on Parallel algorithms and architectures (SPAA ’97), pages 311–320,

New York, NY, USA, 1997. ACM Press.

[73] M. Roseman and S. Greenberg. GroupKit: A groupware toolkit for building real-

time conferencing applications. In Proceedings of the ACM Conference on Computer

Supported Cooperative Work (CSCW ’92), pages 43–50, Toronto, Ontario, 1992.

ACM Press.

[74] G. Russello, M. Chaudron, and M. van Steen. Customizable data distribution for

shared data spaces. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications, June 2003.

[75] A. R. Silva, J. Pereira, and P. Sousa. A framework for heterogeneous concurrency

control policies in distributed applications. In Proceedings of the 8th International

Workshop on Software Specification and Design (IWSSD ’96), page 105, Washing-

ton, DC, USA, 1996. IEEE Computer Society.

[76] A. Spiegel. PANGAEA: An automatic distribution front-end for Java. In Pro-

ceedings of the 11th IPPS/SPDP’99 Workshops Held in Conjunction with the 13th

International Parallel Processing Symposium and 10th Symposium on Parallel and

Distributed Processing, pages 93–99, London, UK, 1999. Springer-Verlag.

[77] Sun Microsystems. Remote Procedure Call Programming Guide, 1986.

[78] Sun Microsystems. Java Remote Method Invocation Specification, 1.10 edition, 2004.

[79] A. S. Tanenbaum, R. van Renesse, H. van Staveren, G. J. Sharp, S. J. Mullender,

J. Jansen, and G. van Rossum. Experiences with the Amoeba distributed operating

system. Communications of the ACM, 33(12):46–63, 1990.

www.manaraa.com

REFERENCES 43

[80] E. Tilevich and Y. Smaragdakis. J-orchestra: Automatic java application partition-

ing. In Proceedings of the 16th European Conference on Object-Oriented Program-

ming (ECOOP ’02), pages 178–204, London, UK, 2002. Springer-Verlag.

[81] E. Tilevich and Y. Smaragdakis. NRMI: Natural and efficient middleware. In Pro-

ceedings of the 23rd International Conference on Distributed Computing Systems

(ICDCS ’03), page 252, Washington, DC, USA, 2003. IEEE Computer Society.

[82] E. Tilevich and Y. Smaragdakis. Portable and efficient distributed threads for Java.

In Proceedings of the 5th ACM/IFIP/USENIX International Conference on Middle-

ware, pages 478–492, New York, NY, USA, 2004. Springer-Verlag New York, Inc.

[83] E. Tilevich, S. Urbanski, Y. Smaragdakis, and M. Fleury. Aspectizing server-side

distribution. In Proceedings of 2003 Automated Software Engineering (ASE ’03),

2003.

[84] E. Tilevicha and Y. Smaragdakis. Automatic application partitioning: The j-

orchestra approach. In Proceedings of 8th ECOOP Workshop on Mobile Object

Systems, 2002.

[85] O. Wolfson, S. Jajodia, and Y. Huang. An adaptive data replication algorithm.

ACM Transactions on Database Systems, 22(2):255–314, 1997.

[86] A. Wood. Coordination with attributes. In Proceedings of the Third International

Conference on Coordination Languages and Models (COORDINATION ’99), pages

21–36, London, UK, 1999. Springer-Verlag.

